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Using the tensorial Landau–de Gennes theory, we study the fluctuations of a disclination line in a nematic
liquid crystal. By analyzing the structure and the spectrum of the eigenmodes of a line of strength ±1/2, we
reassess the concept of line tension used in the simple string model of the disclination showing that it does not
include the complete set of eigenmodes and must be renormalized. In general, the line tension considerably
underestimates the thermal amplitude of a disclination and we find that it is only applicable to severely
confined disclinations.
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As a signature of orientational order, topological defects
are very important for identification, experimental studies,
and applications of liquid crystals[1]. Since the early days of
liquid-crystalline science, the range of techniques has been
extended from passive observation of static structures by po-
larization microscopy to preparation and manipulation of de-
fect structures and detailed analysis of motion, annihilation,
and thermal fluctuations of defects[2–6]. The motivation for
these experiments transcends purely scientific curiosity: for
example, defect dynamics is crucial for switching in nematic
bistable devices[7,8] or multidomain cells[9].

A considerable part of the experiments remains poorly
understood. While it is now widely accepted that the struc-
ture of the defects is rather nontrivial—for example, the core
of an s=1/2 disclination line consists of a uniaxial nematic
phase surrounded by a biaxial mantle(Fig. 1) [10]—the as-
sociated fluctuation dynamics has only been studied within
the director description[11,12]. In this paper, we analyze the
fluctuation eigenmodes at a straights= ±1/2 disclination line
using the full tensorial framework. We focus on the soft
modes that correspond to the string fluctuations, and we
challenge and delimit the validity of the simple string model
of the disclination[13] thereby establishing contact with ex-
perimental observables such as its thermal amplitude or ki-
nematics in general. We also extrapolate our main results to
disclination lines in smectic-C liquid crystals and vortex
lines in superfluids. String models of a line defect are en-
countered in various areas of physics, yet with different lev-
els of approximation. In this paper, we present a rare ex-
ample where the degree of validity of the model can be
determined exactly.

We start with Landau–de Gennes free energy density. In
the one-constant approximation, it consists of three bulk
terms and a single elastic term,
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and is invariant upon a homogeneous rotation of theQ ten-
sor. In the cylindrical coordinate systemhêr ,êf ,êzj with êz

along the disclination core, the eigensystem of the order pa-
rameter tensor rotates asc=c0+ss−1df with respect to the
above base vectors when we encircle a defect of strengths at
the origin(Fig. 1); c is the angle betweenêr and the director
in the far field, andc0=csf=0d.There is no dependence on
f other than this rotation, i.e., the scalar invariants ofQ (the
degrees of order and biaxiality) aref independent.

If we define another triadhê1,ê2,êzj such that ê1

= êrcosc+ êfsin c and ê2=−êrsin c+ êfcosc, the Q eigen-
system of the ground state coincides with this triad every-
where. Introducing the orthonormal symmetric traceless base
tensors[14]: T0=s3êz^ êz− Id /Î6, T1=sê1 ^ ê1− ê2 ^ ê2d /Î2,
T−1=sê1 ^ ê2+ ê2 ^ ê1d /Î2, T2=sêz^ ê1+ ê1 ^ êzd /Î2, T−2

=sêz^ ê2+ ê2 ^ êzd /Î2, the ground stateQ tensor components
aref independent, while the components of an arbitrary per-
turbation can be rotated aroundêz at no cost. Hence the de-
pendence of the eigenmode components onf is sinusoidal.
Similarly, the ground state isz independent and the depen-
dence of the eigenmode components onz is sinusoidal.

We first look for the Goldstone modes, as they yield fami-
lies of slowly relaxing and spatially extensive “soft” fluctua-
tion modes that can be easily observed. “Massive” fluctua-
tions are less interesting, as they are shortliveds<100 nsd
and localizeds<10 nmd. Besides the homogeneous rotations
of theQ tensor, which in a deformed nematic are soft only in
the one-constant approximation, in a deformed system there
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FIG. 1. Tensorial core structure of the 1/2 disclination. TheQ
tensor eigensystem is represented by the orientation of the box,
lengths of the edges are a measure of the eigenvalues.
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exist nontrivial Goldstone modes not subject to this approxi-
mation, corresponding to homogeneous displacement of the
structure—in our case displacement of the disclination line.
Since translational degrees of freedom are absent in this
analysis, displacement is achieved by modifying the order
parameter field. Modulating the displacement modes sinusoi-
dally alongêz results in the string fluctuations of the discli-
nation line(Fig. 2, inset).

SettingQsr ,td=qisr ,tdTisr d, the elastic part of(1) is
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while the bulk part of(1) is a polynomial inqi. We introduce
dimensionless quantities r ← r /j, t← t /t, sA,B,Cd
← sA,B,Cdj2/L, wherej is the correlation length, typically
a few nanometers, andt=m1j2/L is the characteristic time,
typically tens of nanoseconds; herem1 is the “bare” rota-
tional viscosity[15]. Neglecting the hydrodynamic flow, the
order parameter dynamics is governed by the time-dependent
Ginzburg-Landau equation
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The ground state involves only components alongT0 and
T1, Q0sr d=a0srdT0+a1srdT1, whereas fluctuations include all
five components:DQsr ,td=xisr ,tdTi. The fluctuation eigen-
modesxi, satisfyingẋi =−lxi, are sought by theAnsätze

xi = Ri,msrdFismfdsinskzdexps− ltd, i = 0, ± 1 s4d

xi = Ri,m8srdFism8fdsinskzdexps− ltd, i = ± 2 s5d

whereFisxd=cosx for i ù0 andFisxd=sin x for i ,0; the
global angular phase and thez phase are arbitrary. Due to the
continuity and differentiability requirements,m is an integer,

whereasm8 is a half-integer. In the one-constant approxima-
tion, the two sets of componentsxi [Eq. (4) and (5)] are not
coupled, i.e., in-plane(i =0, ±1) and out-of-plane( i = ±2)
fluctuations are independent. Furthermore, thez dependence
is fully decoupled: the radial eigenfunctionsRisrd do not de-
pend onk and the cross-section structure of the disclination
line is not affected by the modulation alongz.

We focus on the in-plane fluctuations. Setting theAnsatz
into Eq. (3), we obtain the eigensystem for the radial func-
tions Ri,msrd

¹2R0,m + Sl' − g0srd −
m2

r2 DR0,m + g01srdR1,m = 0, s6d

¹2R1,m + Sl' − g1srd −
m2 + 4s2

r2 DR1,m −
4sm

r2 R−1,m

+ g01srdR0,m = 0, s7d

¹2R−1,m + Sl' − g−1srd −
m2 + 4s2

r2 DR−1,m −
4sm

r2 R1,m = 0,

s8d

wherel=l'+k2 andl' is the eigenvalue of the radial and
angular part, whereasgi are quadratic polynomials of the
ground state components. Note that defects of strengthss and
−s are formally equivalent, as changing the sign of the defect
and redefiningT−1→−T−1 andT−2→−T−2 preserves the sign
of s in the equations. In our cases=1/2,though it can be any
(half-)integer in principle.

For an infinite system, one can determine the homoge-
neous displacement mode directly by construction. It corre-
sponds tol'=0 (no energy cost) and m=1 (displacement
has dipolar symmetry). SettingQ0sr −ud=Q0sr d+DQsr d, the
perturbationDQ corresponding to the displacementu is
DQsr d=−u ·]Q0/]r , which reads

x0sr dT0 + x1sr dT1 + x−1sr dT−1 = − u ·Sêr
] a0

] r
T0 + êr
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] r
T1

+ êf 2s
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r
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The lowest family of string modes is generated by adding the
z dependence. Hencel=k2, or l=Lk2/m1=Kk2/g1 in physi-
cal units, whereK is the Frank elastic constant andg1 is the
rotational viscosity. This is an exact result for the relaxation
rate of the string mode.

Let us interpret these results by comparing them with a
simple picture of the disclination line. The director free en-
ergy per unit length—line tension—of a straight disclination
line with strengths is

F0 = ps2K ln
R

r0
, s10d

whereK is the Frank elastic constant,R the system size, and
r0 a microscopic cutoff determined by the core energy.
Hence, in a model the disclination line can be considered as
a simple string under tension[13]. The energy cost of its
(overdamped) fluctuation modes(Fig. 2, inset), which can be

FIG. 2. Radial eigenvaluel'n (in units of 1/t) and the norm
squared(arbitrary units) of the nth radial eigenfunctions for two
radii of confinement. ForR=200, l'1=1.4310−5, l'2=4.5
310−4, l'3=1.4310−3; note thatl'2/l'1<30. Inset: the string
fluctuation of the disclination line.
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attributed to the increase in length,Dl =edzs]u/]zd2/2, is
thusDF= 1

2k2u2F0edz cos2kz, whereu is the amplitude and
k the wave vector of the mode.

In the complete description, the energy cost of any fluc-
tuation eigenmodex is given byDFsxd=ledVxi

2/2. For the
homogeneous displacement mode(9) this reads

s11d

Comparing Eq.(11) (multiplied by Lj to revert to physical
units) with the form of the energy cost of the simple string
fluctuation, a line tension can be defined for the disclination
line as indicated by the underbrace. If the string model were
accurate, the line tensionF08 would be the actual free energy
(1) of the unperturbed disclination line per unit length. But it
is exactly the elastic free energy[Eq. (2)] per unit length,
whereas the bulk contributions are absent, indicating that the
volume of the disclination core is unaffected by the fluctua-
tions. Only the elastic terms contribute to the line tension. It
must be stressed that within the isotropic order parameter
elasticity this finding is universal. Far from the defect core
where the bulk free energy contributions vanish, the string
model is correct. Moreover, using the bulk values ofa0 and
a1, the line tension(10) is recovered exactly. However, it
must be emphasized that due to the director distortion this
regime is not approached exponentially but by a power law.

Let us now concentrate on them=1 fluctuations with
l'.0. In solving Eqs.(6)–(8), we confine the system at a
radius R with the restrictionRi,m,nsRd=0 in order to get a
discrete spectruml'n. One might argue that this boundary
condition is rather unphysical. In a real sample, however, one
never deals with an ideally isolated disclination line—it is
surrounded by other defects and irregularities. The boundary
condition should therefore be viewed as an effective confine-
ment. In the limit R→`, physical observables should be
only weakly dependent ofR, such as the free energy(10).
Furthermore, if one uses the boundary conditionRi,1,n8 sRd
=0, the lowest eigenmode is of the growing type, withl'1
~1/R2,0, reflecting the instability of the disclination to-
wards the escape from the system. This finite-size effect is
often manifest in experimental situations: defects are at-
tracted to the boundary or even pass through it if the anchor-
ing is weak enough.

The boundary conditions atr =0 are obtained by finding
the analytic behavior of the ground state and the perturba-
tions for smallr. The eigensystem(6)–(8) is discretized and
efficiently solved by a multidimensional Newton relaxation
method[16], Fig. 3. In the physically relevant limitR@j,
the radial dependence of the lowest modes forr !R is given
by Eq. (9): Each of these modes contributes to the displace-
mentu of the central part. Still in the limitR@j, the differ-
ence Îl'n+1−Îl'n approachesp /R as n→`, i.e., l'n

→ sconst+np /Rd2, Fig. 2. Forn@1, the eigenvalue of the
nth mode scales asl'n~1/R2.

We have shown that the simple string model only includes
the lowestm=1 fluctuation mode. Thus, quite universally,
the contributions of the higherm=1 modes represent a renor-
malization of the model. Thermal fluctuation amplitude of
the kth Fourier component atr =0 is

kDQi
2sr = 0,m= 1,kdl = 2o

n

kck,n
2 lRi,1,n

2 s0d, s12d

where Ri,1,n are normalized andkck,n
2 l=kBT/Ljsk2+l'nd

given by equipartition theorem; the factor of 2 comes from
the twofold angular degeneracy of the modes. The displace-
ment kuk

2l of the line is obtained from Eq.(12) by means of
Eq. (9). If only the lowest radial mode is taken into account
in Eq. (12), which is equivalent to using the nonrenormalized
string model, the thermal amplitude is obviously underesti-
mated(Fig. 4) or conversely, the extracted value ofK is too
low. The error increases rather slowly(logarithmically) with
R; for experimentally relevant length scales it is of the order
of 100%. The failure of the string model is best demonstrated
in the limit R→`: for a fixed and nonzerok, kuk

2l→0 if only
the lowest radial mode is taken into account, since the norm
squared of the mode logarithmically diverges forR→`. Al-
ternatively, the same can be seen by noting the logarithmic
divergence of the line tension(10).

To simulate or analyze a real observation of the disclina-
tion line fluctuations, for a givenk, one has to sum up a
proper number of radial modes possessing a considerable
thermal amplitude. The maximum number is set by the reso-
lution of the instrument—the summation should be stopped
at the latest when the first zero of the radial functions be-
comes comparable to the resolution. As in a real situation
1/k is large compared to the resolution, the series is always
truncated earlier by the diminishing thermal amplitude and
hence there is no cutoff ambiguity. The two characteristic
regimes are illustrated in Fig. 4: ifp /k!R, many radial
modes have to be summed up and the fluctuation amplitude
is essentially independent of the system sizeR (upper dia-
gram); if p /kùR (severe confinement) a few modes suffice
and the fluctuation amplitude is suppressed by decreasingR
(lower diagram).

FIG. 3. Three lowest radial eigenfunctions(not normalized) for
m=1. For i =0,1 thefunctions Ri,m,n8 overlap on the scale of the
graph.
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Of course, there exist other soft fluctuation modes which
have not been discussed here. They are either zero atr =0 or
involve out-of-plane components, and thus these modes are
not important for the fluctuations of the disclination line. For
example, them=0 soft mode, which involves only the com-
ponentx−1 [in this case Eq.(8) is decoupled], corresponds to
the Goldstone rotation ofQ around thez axis. Naturally, it is
present regardless of the configuration; the defect structure

merely causes the radial eigenfunction to decay at the
uniaxial core.

In summary, we have demonstrated that the simple string
model of the disclination line is generally inadequate, and we
have shown how the amplitude of line fluctuations can be
calculated consistently within the tensorial formalism. Our
results are valid in the approximation where the gradients
alongz enter the free energy in purely quadratic terms, which
holds not only for nematic liquid crystals but also for smetic-
C liquid crystals in the one-constant approximation as well
as for superfluids. Superconductors and their analogues
smectic-A liquid crystals [17] possess an additional vector
order parameter(vector potentialA/nematic director) besides
theXY-model degrees of freedomC= uCuexpsifd (supercon-
ducting wave function/smectic density wave). Here¹C and
A are coupled byus−i"¹−eAdCu2/2m, which implies that
gradients alongz induce a change inA. As a consequence,
fluctuations of a vortex line in superconductors or a disloca-
tion in smectic-A liquid crystals cannot be reduced to mere
displacements but also include distortions of the line struc-
ture. Thus the actual line tension cannot be consistently in-
terpreted as the free energy per unit length, not even asymp-
totically. However, one can still define an effective line
tension using a string model renormalized by the higher ra-
dial modes.

Backflow has been neglected in this study. One expects
that it will have mainly an advective effect, causing transla-
tional motion of the line on top of director rotation. Consid-
ering the symmetry breaking caused by backflow in the case
of pair annihilation[18], we expect the relaxation ratel to
increase due to backflow, at least for the +1/2 line. The
increase might be of order of 100% and is expected to de-
crease with increasing wave vectork as the shearing gets
stronger.
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FIG. 4. rms displacement of the disclination line(the length unit
is j) vs the number of radial modes summed in the regimes of weak
(upper diagram) and severe confinement;nmax=1 corresponds to the
nonrenormalized string model. The maximum size of the computa-
tional domain is R=580, the values beyond this range(R
=1000,R=10 000) are extrapolated.
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