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Fluctuations of topological disclination lines in nematic liquid crystals:
Renormalization of the string model
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Using the tensorial Landau—de Gennes theory, we study the fluctuations of a disclination line in a hematic
liquid crystal. By analyzing the structure and the spectrum of the eigenmodes of a line of strength +1/2, we
reassess the concept of line tension used in the simple string model of the disclination showing that it does not
include the complete set of eigenmodes and must be renormalized. In general, the line tension considerably
underestimates the thermal amplitude of a disclination and we find that it is only applicable to severely
confined disclinations.
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As a signature of orientational order, topological defectsand is invariant upon a homogeneous rotation ofheen-
are very important for identification, experimental studies,sor. In the cylindrical coordinate systefg,,&,,&,} with &,
and applications of liquid crysta[4]. Since the early days of along the disclination core, the eigensystem of the order pa-
liquid-crystalline science, the range of techniques has beerameter tensor rotates @& i+ (s—1)¢ with respect to the
extended from passive observation of static structures by pabove base vectors when we encircle a defect of strenth
larization microscopy to preparation and manipulation of dethe origin(Fig. 1); ¢ is the angle betwee® and the director
fect structures and detailed analysis of motion, annihilationin the far field, andy,=y(4=0).There is no dependence on
and thermal fluctuations of defed@-6]. The motivation for ¢ other than this rotation, i.e., the scalar invariantofthe
these experiments transcends purely scientific curiosity: fogegrees of order and biaxialjtare ¢ independent.
example, defect dynamics is crucial for switching in nematic |f we define another triad{&,,&,,8,} such that @
bistable device$7,8] or multidomain cell§9]. =@,cos ¢r+8,sin ¢ and &=~ sin y+8&,c0s ¢, the Q eigen-

A considerable part of the experiments remains poorlysystem of the ground state coincides with this triad every-
understood. While it is now widely accepted that the struchere. Introducing the orthonormal symmetric traceless base
ture of the defects is rather nontrivial—for example, the corqensors[14]: T,=(38,08&,~1)/\6, T;=(&,®&,-&,® &,)/12,
of ans=1/2 disclination Ii|_’1e _consists of a uniaxial nematic T =@ 06+808)/\2, T,=@0e+808)\2, T,
phase surrounded by a biaxial mantfeg. 1) [10]—the as-  —(3 98 +8,98,)/12, the ground stat® tensor components
sociated fluctuation dynamics has only been studied Wlthl%reqﬁ independent, while the components of an arbitrary per-
the director descriptiofil1,12. In this paper, we analyze the turbation can be r;)tated aroulgat no cost. Hence the de-
qu_ctuation eigenmodt_as at a straight+ 1/2 disclination line pendence of the eigenmode componentsfois sinusoidal.
using the full tensorial framework.. We focus_on the SOﬂSimiIarIy, the ground state is independent and the depen-
modes that correspond to the string fluctuations, and W8ance of the eigenmode componentszda sinusoidal.
challenge and delimit the validity of the simple string model We first look for the Goldstone modes, as they yield fami-

of the disclination[13] thereby establishing contact with ex- lies of slowly relaxing and spatially extensive “soft” fluctua-

penmgnta_l observables such as its thermal amp!ltude or klt"|on modes that can be easily observed. “Massive” fluctua-
nematics in general. We also extrapolate our main results

NS ? ; e tﬁons are less interesting, as they are shortliyed.00 n
disclination lines in smecti€G liquid crystals and vortex 9 y ¢ 3

. . . . . and localized =10 nm). Besides the homogeneous rotations
lines in superfluids. String models of a line defect are en- L : .
' ; . L of the Q tensor, which in a deformed nematic are soft only in

countered in various areas of physics, yet with different lev-, S
L . the one-constant approximation, in a deformed system there

els of approximation. In this paper, we present a rare ex-

ample where the degree of validity of the model can be

determined exactly. J / v/ &

We start with Landau—de Gennes free energy density. In

the one-constant approximation, it consists of three bulk J J FAK 4 IR
terms and a single elastic term, e

'\:‘;‘:\biaxial mantle

...................................... uniaxial far-field

(D) \‘ N Vv

FIG. 1. Tensorial core structure of the 1/2 disclination. The
*Author to whom correspondence should be addressed. FAXtensor eigensystem is represented by the orientation of the box,
+386 1 2517281. Email address: daniel@fiz.uni-lj.si lengths of the edges are a measure of the eigenvalues.

1 1 1 1
f= EA TrQ?+ §B TrQ3+ ZC(TrQ2)2+ EL Tr(VQ - VQ),
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whereaan' is a half-integer. In the one-constant approxima-

0.2- A r =200 tion, the two sets of componemts[Eq. (4) and(5)] are not
RS coupled, i.e., in-plangi=0, +1) and out-of-plang i=+2)
v normr* (R = 580) fluctuations are independent. Furthermore, zliependence

is fully decoupled: the radial eigenfunctioRgr) do not de-
pend onk and the cross-section structure of the disclination
line is not affected by the modulation alozg

An 0.1

0.0 We focus on the in-plane fluctuations. Setting fesatz
2 into Eq. (3), we obtain the eigensystem for the radial func-
0 20 40 60 80 tions R in(r)
mn m2
V2Rym+ | A1 = 0o(r) = — |Rom+ Goa()Ry =0,  (6)
FIG. 2. Radial eigenvalug ,,, (in units of 1/7) and the norm Rom 17 % r2 m 01 L m T M

squared(arbitrary unit3 of the nth radial eigenfunctions for two
radii of confinement. ForR=200, \,,=1.4X105 X, ,=4.5
X104 N, 3=1.4X 1073 note that\ , ,/\ | ;=30. Inset: the string V2R1'm + ()\L —gy(r) -

m? + 432) 4sm

-2 Rl,m - _zR—l,m
fluctuation of the disclination line. r r

+ gOl(r)RO,m: 0! (7)

exist nontrivial Goldstone modes not subject to this approxi-
mation, corresponding to homogeneous displacement of the V2 B B m? + 4> _4sm _
structure—in our case displacement of the disclination line. Roam* | M= 9-4(r) r2 Roim r2 Rim=0,
Since translational degrees of freedom are absent in this 8
analysis, displacement is achieved by modifying the order (8)

parameter field. Modulating the displacement modes sinusoivherex=\ , +k? and X | is the eigenvalue of the radial and
dally alongé, results in the string fluctuations of the discli- angular part, whereag, are quadratic polynomials of the

nation line(Fig. 2, inset. ground state components. Note that defects of strersgihs!
SettingQ(r,t)=g;(r ,t)T;(r), the elastic part of1) is -s are formally equivalent, as changing the sign of the defect
2 2 2 and redefiningl ., —-T_; andT_,— —T_, preserves the sign
fe= E{E [(ﬂ) + (ﬂ) } + %{(ﬂ)) of sin the equations. In our case 1/2,though it can be any
2|15 L\ar 9z ref\d¢ (half-)integer in principle.
a4 2 (4 2 (4 P For an infinite system, one can determine the homoge-
(_1 - 25 1) + (L‘l +2s 0a> + (ﬁ -s 0r2> neous displacement mode directly by construction. It corre-
d¢ d¢ d¢ sponds tox , =0 (no energy cogtand m=1 (displacement
FE 2 has dipolar symmetpy SettingQq(r —u)=Qq(r)+AQ(r), the
+ (W-‘-S Clz) : (2)  perturbationAQ corresponding to the displacemeant is
AQ(r)=-u-dQ/ dr, which reads
while the bulk part of1) is a polynomial ing;. We introduce . dag L day
dimensionless quantitesr«—r/¢ t—t/7, (A,B,C) Xo(N)To+Xg(N) T+ X 4(r)T_3=-u -(er&—To+er(9—T1
—(A,B,C)&/L, where¢ is the correlation length, typically ' '
a few nanometers, ang= u,£°/L is the characteristic time, . =
typically tens of nanoseconds; herg is the “bare” rota- T8 Zsr Ta). ©)

tional viscosity[15]. Neglecting the hydrodynamic flow, the ) ) ) )
order parameter dynamics is governed by the time-dependeht' lowest family of string modes is generated by adding the

Ginzburg_Landau equation Z depe.ndence. H(?I’IOGZKZ, or )\:LKZ./ILL:L:KkZ/ Y1 in phySI-
cal units, whereK is the Frank elastic constant anglis the
a0 _ af  af 3) rotational viscosity. This is an exact result for the relaxation
at avag dqg’ rate of the string mode.

. Let us interpret these results by comparing them with a
The ground state involves only components aldggnd  simple picture of the disclination line. The director free en-

T1, Qolr)=ag(r) To+ay(r)Ty, whereas fluctuations include all grqy per unit length—line tension—of a straight disclination
five componentsAQ(r,t)=x(r ,)T;. The fluctuation eigen- |ine with strengths is
modesx;, satisfyingx;=—\x;, are sought by thénséatze

R
% = R (1)@ (ma)sinkdexp-AD), i=0,+1 (4) Fo=msKIn, (10)
% =R (N®,(M P)sin(kexp(-\t), i=+2 (5) whereK is the Frank elastic constarR,the system size, and

ro a microscopic cutoff determined by the core energy.
where ®;(x)=cosx for i=0 and®;(x)=sinx for i<0; the  Hence, in a model the disclination line can be considered as
global angular phase and tag@hase are arbitrary. Due to the a simple string under tensiofi3]. The energy cost of its
continuity and differentiability requirements) is an integer, (overdampegfluctuation modesFig. 2, inse}, which can be
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attributed to the increase in length)=/dz(du/9z)?/2, is 1.07
thus AF =2K2U2F, [ dz coskz, whereu is the amplitude and
k the wave vector of the mode. 0.5
In the complete description, the energy cost of any fluc-
tuation eigenmode is given byAF(x)=\ [dV¥/2. For the 0.0

homogeneous displacement ma@e this reads

1 J 2 J 2 2 -0.5
AF:—kzuzﬂTfrdrKﬁ) +<$> +4sz<ﬂ> ]
2 Jar Jar r

. v o’ -1.0'
5 FIG. 3. Three lowest radial eigenfunctiomt normalizeg for
m=1. Fori=0,1 thefunctionsR/ , , overlap on the scale of the
X f dz cos’kz. graph.
(11)

— (constnm/R)?, Fig. 2. Forn>1, the eigenvalue of the
Comparing Eq(11) (multiplied by L& to revert to physical nth mode scales as, ,> 1/R2.
units) with the form of the energy cost of the simple string  We have shown that the simple string model only includes
fluctuation, a line tension can be defined for the disclinatiorthe lowestm=1 fluctuation mode. Thus, quite universally,
line as indicated by the underbrace. If the string model weréhe contributions of the highen=1 modes represent a renor-
accurate, the line tensiaf, would be the actual free energy malization of the model. Thermal fluctuation amplitude of
(1) of the unperturbed disclination line per unit length. But it the kth Fourier component at=0 is
is exactly the elastic free enerd§q. (2)] per unit length,
whereas the bulk contributions are absent, indicating that the 2 _ 2 2
volume of the disclination core is unaffected by the fluctua- (AQi(r=0,m=1k)= ZEH (CwR1n0, (12
tions. Only the elastic terms contribute to the line tension. It
must be stressed that within the isotropic order parameter
elasticity this finding is universal. Far from the defect corewhere R 1, are normalized and(cf )=ksT/LEK2+N ;)
where the bulk free energy contributions vanish, the stringiven by equipartition theorem; the factor of 2 comes from
model is correct. Moreover, using the bulk valuesagfand  the twofold angular degeneracy of the modes. The displace-
a,, the line tension(10) is recovered exactly. However, it ment(uﬁ) of the line is obtained from Eq12) by means of
must be emphasized that due to the director distortion thi€qg. (9). If only the lowest radial mode is taken into account
regime is not approached exponentially but by a power lawin Eq.(12), which is equivalent to using the nonrenormalized
Let us now concentrate on the=1 fluctuations with  string model, the thermal amplitude is obviously underesti-
N\, >0. In solving Egs(6)—8), we confine the system at a mated(Fig. 4) or conversely, the extracted value Kfis too
radius R with the restrictionR; ,,,(R)=0 in order to get a low. The error increases rather slowlpgarithmically) with
discrete spectrum ;.. One might argue that this boundary R; for experimentally relevant length scales it is of the order
condition is rather unphysical. In a real sample, however, onef 100%. The failure of the string model is best demonstrated
never deals with an ideally isolated disclination line—it is in the limit R— <: for a fixed and nonzerk, <u§>—>0 if only
surrounded by other defects and irregularities. The boundanhe lowest radial mode is taken into account, since the norm
condition should therefore be viewed as an effective confinesquared of the mode logarithmically diverges R . Al-
ment. In the limitR— o, physical observables should be ternatively, the same can be seen by noting the logarithmic
only weakly dependent oR, such as the free enerdg0). divergence of the line tensioil0).
Furthermore, if one uses the boundary conditRf ,(R) To simulate or analyze a real observation of the disclina-
=0, the lowest eigenmode is of the growing type, with,  tion line fluctuations, for a giverk, one has to sum up a
=« 1/R?<0, reflecting the instability of the disclination to- proper number of radial modes possessing a considerable
wards the escape from the system. This finite-size effect ithermal amplitude. The maximum number is set by the reso-
often manifest in experimental situations: defects are athlution of the instrument—the summation should be stopped
tracted to the boundary or even pass through it if the anchorat the latest when the first zero of the radial functions be-
ing is weak enough. comes comparable to the resolution. As in a real situation
The boundary conditions at=0 are obtained by finding 1/k is large compared to the resolution, the series is always
the analytic behavior of the ground state and the perturbaruncated earlier by the diminishing thermal amplitude and
tions for smallr. The eigensysten®)—(8) is discretized and hence there is no cutoff ambiguity. The two characteristic
efficiently solved by a multidimensional Newton relaxation regimes are illustrated in Fig. 4: ifr/k<R, many radial
method[16], Fig. 3. In the physically relevant limiR> ¢, modes have to be summed up and the fluctuation amplitude
the radial dependence of the lowest modesf@R is given  is essentially independent of the system dkéupper dia-
by Eg.(9): Each of these modes contributes to the displacegram); if 7/k=R (severe confinemena few modes suffice
mentu of the central part. Still in the limiR> ¢, the differ-  and the fluctuation amplitude is suppressed by decreding
ence VA +1— VA, approachesm/R as n—co, ie., A, (lower diagran.
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9o] _ﬂﬂ,‘:ﬂﬂﬂnhi ] merely causes the radial eigenfunction to decay at the
;,,::; aadd un||aX|aI core. A . ated that the simole b
20+ s — | n summary, we have demonstrated that the simple string
o -/./';/‘} model of the disclination line is generally inadequate, and we
2;13- // T 1 have shown how the amplitude of line fluctuations can be
~ / 7 v calculated consistently within the tensorial formalism. Our
161 7 o R-W results are valid in the approximation where the gradients
'/ —e— R =580 . . .
/ —a— R=1000 alongz enter the free energy in purely quadratic terms, which
14y [/ —v— R=10000 1 holds not only for nematic liquid crystals but also for smetic-
0 5 10 15 20 25 30 C liquid crystals in the one-constant approximation as well
mas as for superfluids. Superconductors and their analogues
smecticA liquid crystals[17] possess an additional vector
1o e ] order parametevector potentia/A/nematic directorbesides
e Tlassssssssasssnssss the XY-model degrees of freedoti=|¥|expl(i¢) (supercon-
160 /‘7{ 1 ducting wave function/smectic density wavelere V¥ and
S ./'/ ’m A are coupled by(-iAV—-eA)¥[?/2m, which implies that
2 gradients alon@ induce a change i&. As a consequence,
~ 140+ T Re fluctuations of a vortex line in superconductors or a disloca-
v —a— R =1000 tion in smecticA liquid crystals cannot be reduced to mere
1301 —v— R =10000 |- displacements but also include distortions of the line struc-
s . : : . . ture. Thus the actual line tension cannot be consistently in-
0 5 10 15 20 25 30 terpreted as the free energy per unit length, not even asymp-
"maa totically. However, one can still define an effective line
tension using a string model renormalized by the higher ra-

FIG. 4. rms displacement of the disclination liftee length unit

is &) vs the number of radial modes summed in the regimes of weal . .
& 9 Backflow has been neglected in this study. One expects

(upper diagrammand severe confinemenmt;,,,=1 corresponds to the hat it will h il . ff, : |
nonrenormalized string model. The maximum size of the computat_ atit wi [nave mainly an advectlve_ efiect, causing tra”? a
tional domain is R=580, the values beyond this rang® tional motion of the line on top of director rotation. Consid-

=1000,R=10 00Q are extrapolated. ering the symmetry breaking caused by backflow in the case
of pair annihilation[18], we expect the relaxation rateto

Of course, there exist other soft fluctuation modes whichincrease due to backflow, at least for the +1/2 line. The
have not been discussed here. They are either zere@br  increase might be of order of 100% and is expected to de-
involve out-of-plane components, and thus these modes agease with increasing wave vectoras the shearing gets
not important for the fluctuations of the disclination line. For stronger.
example, them=0 soft mode, which involves only the com-
ponentx_; [in this case Eq(8) is decouplefl corresponds to This work was encouraged by P. Ziherl and supported by
the Goldstone rotation d around thez axis. Naturally, itis  the Slovenian Office of Sciendg®rogram P1-009%nd the
present regardless of the configuration; the defect structurd.S.—Slovene NSF Joint FuriGrant No. 98153133

lgial modes.
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